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Long-term conservation of 7.4 million ex situ seed accessions held in agricultural genebanks and botanic gardens worldwide 
is a challenging mission for human food security and ecosystem services. Recent advances in seed biology and genomics may 
have opened new opportunities for effective management of seed germplasm under long-term storage. Here, we review the 
current development of tools for assessing seed ageing and research advances in seed biology and genomics, with a focus on 
exploring their potential as better tools for monitoring of seed ageing. Seed ageing is found to be associated with the changes 
reflected in reactive oxygen species and mitochondria-triggered programmed cell deaths, expression of antioxidative genes 
and DNA and protein repair genes, chromosome telomere lengths, epigenetic regulation of related genes (microRNA and 
methylation) and  altered organelle and nuclear genomes. Among these changes, the signals from mitochondrial and nuclear 
genomes may show the most promise for use in the development of tools to predict seed ageing. Non-destructive and non-
invasive analyses of stored seeds through calorimetry or imaging techniques are also promising. It is clear that research into 
developing advanced tools for monitoring seed ageing to supplement traditional germination tests will be fruitful for effec-
tive conservation of ex situ seed germplasm.
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Introduction
The last 100 years have seen increased concerns about the 
erosion of genetic diversity in agricultural crops and the loss 
of biodiversity in natural ecosystems (Baur, 1914; Harlan and 
Martini, 1936; National Research Council, 1972; Corvalan 
et al., 2005), and large global efforts have been made to con-
serve plant genetic resources (Frankel and Bennett, 1970). 
Currently, there are more than 7.4 million accessions of seed 
germplasm conserved in 1750 genebanks around the world, 
and more than 130 genebanks have 10 000 or more acces-
sions (FAO, 2010). More than 30 000 wild plant species are 
conserved in stored seeds in the Royal Botanic Gardens, Kew, 
and the Chinese Academy of Sciences’ Kunming Institute of 

Botany (Li and Pritchard, 2009). Ex situ seed storage is among 
the most effective ways to conserve desiccation-tolerant seed 
germplasm (Smith et al., 2003). However, seeds in long-term 
storage will eventually lose their viability; therefore assess-
ment of seed deterioration over time is required (Walters et al., 
2005; Hay and Probert, 2013; van Treuren et al., 2013). Given 
such a huge volume of ex situ genetic resources, the long-term 
conservation is a challenging mission, and yet critical for 
human food security and ecosystem services.

The maintenance of ex situ seed viability over long periods 
of time in genebanks is a key element in conservation of plant 
genetic resources. Standards aimed at maintaining seed viability 
have been developed and applied in genebank management 
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procedures, including drying and storage under low seed 
moisture content and temperature (FAO, 2014). However, 
seed longevity varies among species and genotypes, and stored 
seeds will lose their viability over time to a level at which 
seed  regeneration is required (Walters et al., 2005; Nagel 
et al., 2009; Probert et al., 2009; van Treuren et al., 2013). 
Regeneration is a costly genebank operation and may also 
negatively affect the genetic integrity of an accession through 
exposure to the influence of genetic drift, selection, contami-
nation and human error. Therefore, it is important to maxi-
mize seed longevity and keep operational costs and logistics 
manageable through monitoring of seed deterioration, an 
essential task for managing stored germplasm (Engels and 
Visser, 2003).

Seed ageing or seed deterioration is commonly described as 
the loss of seed quality or viability over time (Priestley, 1986; 
Coolbear, 1995). Currently, a germination test is the standard 
method used to assess viability of ex situ conserved seeds 
(Smith et al., 2003; FAO, 2014). However, it destroys germ-
plasm; can be a time-consuming and labour-intensive opera-
tion, given the huge amount of conserved germplasm; and 
neither assesses underlying mechanisms of seed deterioration 
nor provides any early projection of seed longevity for regen-
eration timing. Therefore, new non-destructive, low-cost, 
quick, sensitive and equally reliable methods are being sought 
for seed ageing assessments (Kranner et al., 2010b; Colville 
et al., 2012; Donà et al., 2013). As a result, many new tools 
for assessing seed ageing have been developed (Corbineau, 
2012) and, following recent advances in seed biology and 
genomics, more sensitive tools, such as genomic or biochemi-
cal markers, are anticipated. Much research has been directed 
toward understanding the fundamentals of seed ageing and 
the roles of programmed cell death (PCD), mitochondria and 
epigenetics in seed deterioration. These advances have given 
us a clearer sense of the complex process of seed deterioration 
(Priestley, 1986; Smith and Berjak, 1995; Walters, 1998; 
McDonald, 1999; Rajjou et al., 2012; Ventura et al., 2012). 
Application of next generation sequencing technologies 
(Metzker, 2010) may allow for better detection of genomic 
changes associated with seed ageing (Bräutigam and Gowik, 
2010) and may have provided a new opportunity for effective 
management of ex situ seed germplasm (Kocsy, 2015).

Here, we present a literature review with the following 
aims: (i) to summarize existing tools for assessing seed dete-
rioration; (ii) to explore sensitive signals of seed ageing from 
recent research in seed biology and genomics; and (iii) to dis-
cuss the perspectives for the development of new sensitive 
tools for predicting seed ageing under ex situ storage. It is our 
hope that this review will advance our understanding of seed 
ageing and help to stimulate research efforts towards better 
monitoring of seed ageing under ex situ seed conservation.

Tools for assessing seed deterioration
Seed deterioration in genebanks is normally predicted through 
assessments of seed viability, germination, vigour and integrity. 

There are many different methods available to assess seed 
 ageing (ISTA, 2005). The simplest testing method is direct 
visual inspection of seeds, but such inspection is unreliable. 
The most commonly used alternative is the standard germina-
tion test. There are also other, more complicated, biochemical 
testing procedures and non-destructive or non-invasive meth-
ods available. Recent years have seen the development of many 
new tools for assessing seed deterioration. Here, we highlight 
some of the recent developments.

Traditional tests
A germination test is the recommended method for testing 
seed deterioration in a genebank, because it is an accurate and 
reliable method. An accelerated ageing test (Delouche and 
Baskin, 1973) and electrical conductivity test (Thomas, 1960) 
are commonly used to assess seed vigour and facilitate seed 
ageing research. Available biochemical tests include the tetra-
zolium, vital colouring, enzyme activity, free fatty acid, hydro-
gen peroxide, indoxyl acetate, fast green, ferric chloride, 
sodium hypochlorite, excised embryo and X-ray tests. These 
methods are well described and their use is discussed in detail 
by Copeland and McDonald (1995). The use of these bio-
chemical methods for seed quality testing is restricted specifi-
cally for seed viability, germinability, vigour or integrity under 
ISTA rules (http://www.ingentaconnect.com/content/ista/
rules). Biochemical tests are useful when germination tests 
yield variable results and have the advantage of being quick. 
However, some tests have the weakness of low accuracy and 
also require special skills to conduct and specialized knowl-
edge to interpret test outcomes. These features help to explain, 
at least partly, why these tests are not usually recommended 
for general use in assessing seed deterioration in genebanks 
(Ellis et al., 1985; FAO, 2014).

Non-destructive and non-invasive methods
Non-destructive and/or non-invasive evaluations of seed dete-
rioration are desirable (Agelet et al., 2012; Ishimwe et al., 
2014), particularly for seed collections of low amount or low 
viability, because assayed seeds may not be affected or 
destroyed and could be used for regeneration or other pur-
poses. Efforts have been made to develop reliable non-destruc-
tive and/or non-invasive tests (e.g. Prat, 1952; Mourik and 
Bakri, 1991; Crane and Walters et al., 2009; Kim et al., 2014). 
Here, we highlight several developments in the last decade. 
Kranner et al. (2010b) presented a method using infrared 
thermography to diagnose the developmental stage of a ger-
minating pea (Pisum sativum) seed, non-invasively and in real 
time. Likewise, Kim et al. (2014) described an infrared ther-
mal signal measurement system and photo-thermal signal and 
image reconstruction techniques for viability estimation of 
pepper (Capsicum annuum) seeds. Xin et al. (2013) demon-
strated a real-time, non-invasive, micro-optrode technique for 
detecting seed viability in several crops by using oxygen 
influx. Isothermal microcalorimetry was explored for use as a 
tool to predict seed longevity in Ranunculus sceleratus (Hay 
et al., 2006), and differential scanning calorimetry was applied 
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to measure seed deterioration in lettuce (Lactuca sativa; Crane 
and Walters, 2009). Measurement of volatile substance pro-
duction from stored seeds has also been suggested as a valu-
able non-invasive alternative to predict the duration of the 
early, asymptomatic stage of seed deterioration (Hailstones 
and Smith, 1989; Mira et al., 2010; Colville et al., 2012). 
Min and Kang (2011) developed a simple, quick and non-
destructive test method based on resazurin reagent, which was 
made by mixture of resazurin and yeast, for determining 
Brassicaceae seed viability. However, all of these methods have 
not been fully tested on stored seeds of different species and, 
consequently, are not yet widely applied in genebank opera-
tions.

Marker-based methods
Considerable research has also been conducted to develop 
biomarkers for evaluating seed quality (Corbineau, 2012). 
Table 1 summarizes the biomarkers available for assessment 
of seed ageing, which were developed largely from biochemi-
cal and physiological research. These biomarkers are largely 
associated with factors involved in processes such as electro-
lyte leakage and ethylene production during imbibition, the 
cell cycle (DNA replication, β-tubulin), soluble sugar metabo-
lism (in particular, changes in the raffinose family of oligosac-
charides), the efficiency of reactive oxygen species (ROS) 
scavenging through antioxidant defence systems (e.g. catalase 
activity) as well as various other proteins (11S globulin 
β-subunit, late embryogenesis abundant protein, heat-shock 
protein). One exciting example is the prediction tool used for 
detecting specific co-ordination during seed ageing mediated 
by common cis-elements and trans-factors, otherwise not 
detectable by conventional transcript analysis (Bassel et al., 
2011). Recently, the half-cell reduction potentials of low 
molecular weight thiols, cysteine, cysteinyl-glycine and 
γ-glutamyl-cysteine, have been explored as biomarkers for 
seed ageing (Kranner et al., 2006; Birtic et al., 2011). These 
developments clearly illustrate the varied and exciting achieve-
ments in the search for informative biomarkers of seed viabil-
ity, but no reports have been found so far on the applications 
of these biomarkers in genebank operations.

Some genetic markers have also been developed (El-Maarouf-
Bouteau et al., 2011; Hu et al., 2012) for detection of DNA 
damage and mutational events, including point mutations, 
structural rearrangements, small insertions or  deletions of DNA 
and other genetic changes (Shatters et al., 1995; Liu et al., 2005; 
Atienzar and Jha, 2006; Vijay et al., 2009). The last decade has 
also seen some research effort directed towards the inference of 
the genetic basis of seed deterioration through investigation of 
quantitative trait loci associated with seed longevity (e.g. Nagel 
et al., 2009; Arif et al., 2012; Han et al., 2014). These efforts 
have helped to identify favourable longevity alleles for better 
prediction of seed longevity in plant germplasm collections. For 
example, four genomic regions identified for wheat (Triticum 
aestivum) seed longevity are known to contain genes associated 
with spike traits or biotic and abiotic stress responses (Arif et al., 
2012). These findings are encouraging, because an accurate 

 prediction of seed ageing before storage would allow for better 
viability monitoring of stored seeds (Nagel et al., 2015).

Seed ageing signals
The causes of seed ageing and death are not fully understood, 
because seed ageing is a complex biological trait and involves 
a network of molecular, biochemical, physiological and meta-
bolic processes. Large efforts have been made to understand 
these ageing processes from the aspects of seed development, 
vigour, viability, longevity and germination. In recent years, 
many reviews have been published attempting to explain var-
ious aspects around the progression of seed deterioration (e.g. 
Bove et al., 2001; Chaudhury et al., 2001; Weber et al., 2005; 
Le et al., 2007; Linkies et al., 2010; Nonogaki et al., 2010; 
Rajjou et al., 2012; Ventura et al., 2012; Diaz-Vivancos et al., 
2013; Sreenivasulu and Wobus, 2013). Here, we focus only on 
those studies revealing detectable signals of potential use for 
seed ageing assessment. Also, we search only for those signals 
reflecting various stages of seed deterioration, rather than for 
the molecular or cellular changes associated with the regula-
tion and development of a process.

Molecular signals
Research has shown that seed ageing is associated with chro-
mosomal aberration, telomere length change, DNA dam-
age,  DNA methylation and abnormal gene expression. 
Chromosomal aberrations in aged seeds comprise fragmenta-
tion, fusion, bridges, ring formation of chromosomes and 
alterations in nuclear size (e.g. McDonald, 1999; Chwedorzewska 
et al., 2002a, b). Age-related DNA changes have been illus-
trated through the investigation of DNA profiles of differen-
tially aged seeds of soybean (Glycine max) and safflower 
(Carthamus tinctorius) obtained using different DNA marker 
technologies (Vijay et al., 2009). These chromosomal changes 
affect the expression of genes essential for successful germina-
tion. Experiments with wheat and rye (Secale cereale) seeds 
have shown a negative correlation between telomere length 
and seed ageing (Bucholc and Buchowicz, 1992). Donà et al. 
(2013) also reported that dry and rehydrated seeds of Silene 
vulgaris and Silene acaulis exhibit significant differences in 
their average telomere length. The telomere length increased 
significantly upon rehydration, but decreased significantly 
when seeds of both species were subjected to artificial ageing. 
These findings point to the possibility of using telomere length 
as a reliable marker for seed ageing (Boubriak et al., 2007).

DNA damage in stored seeds can occur due to oxidative 
stress and needs to be repaired at the onset of imbibition for 
effective seed germination. Multiple DNA ligase genes and 
protein l-isoaspartyl methyltransferase (PIMT) are needed for 
DNA and protein repairs, respectively. In Arabidopsis, atlig6 
single and atlig6 atlig4 double mutants exhibited significant 
hypersensitivity to controlled seed ageing and showed delayed 
germination and reduced viability when compared with the 
wild-type. These observations suggest that atlig6 is a major 
determinant of Arabidopsis seed quality and longevity 
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Table 1: List of reported biomarkers associated with seed ageing of 17 plant species

Biomarker Description Signala Referenceb

ATS Aberrant tests shape 1; C Clerkx et al., (2004) [1]

DOG1 Delay of germination1 1; N Bentsink et al. (2006) [1]

NIC2 Nicotinamidase enzyme 1, 2; N Hunt et al. (2007) [1]

GAMT2 Gibberellic acid methyltransferase2 1, 2; N Xing et al. (2007) [1]

PIMT1 l-Isoaspartyl methyltransferase 1, 2; C Ogé et al. (2008) [1]

Atlig6 DNA ligase VI 1, 2; C Waterworth et al. (2010) [1]

At3g08030 Cell-wall-associated protein 1; C Garza-Caligaris et al. (2012) [1]

MT1 Metallothionein1 1; N Revilla et al. (2009) [2]

eIFiso4E Translation initiation factor 1; N Dinkova et al. (2011) [2]

OGG1 8-Oxoguanine DNA glycosylase/lyase1 1, 2; N Macovei et al. (2011) [5]

PIMT2 l-Isoaspartyl methyltransferase 1, 2; C Verma et al. (2013) [6]

MT2 Type 2 metallothionein 1; C Donà et al. (2013) [7,8]

Telomere length 1; C Donà et al. (2013) [7,8]

HSFA9 Heat stress transcription factor 1; C Prieto-Dapena et al. (2006) [10]

Genetic integrity Chromosomal aberration, DNA and RNA 
oxidation, DNA laddering etc.

1; N, C Cheah and Osborne (1978); Osborne et al. 
(1981); Vazquez-Ramos et al. (1988); Bednarek 
et al. (1998); Stein and Hansen (1999); 
Slupphaug et al. (2003); Corbineau (2012)

FPG Formamidopyrimidine-DNA glycosylase 1,2; N Macovei et al. (2011) [5]

TRX Thioredoxin 1,2; N, C Buchanan and Balmer (2005) [1]

DNA methylation 1,2,3; C Michalak et al. (2013) [17]

MS Methionine synthase 2; N Gallardo et al. (2002a) [1]

MAT S-Adenosyl-methionine synthetase 2; N Gallardo et al. (2002a) [1]

AdoHcyase S-Adenosyl-l-homocysteine hydrolase 2; N Rocha et al. (2005) [1]

PLDα1 Phospholipase D-alpha1 2; C Devaiah et al. (2007) [1]

PRT6 Proteolysis6 2; N Holman et al. (2009) [1]

PP2C5 Protein phosphatase 2C5 2; N Brock et al. (2010) [1]

LOX Lipoxygenases 2; C Li et al. (2007) [2]

ALDH Aldehyde dehydrogenase 2; C Shin et al. (2009) [3]

BiP Immunoglobulin binding protein 2; C Gurusinghe et al. (2002) [9]

Antioxidant activity 2,3; C Sung and Jeng (1994) [13]

ABA/GA balance 2,3,4; N Yamaguchi et al. (1998) [1]; Kushiro et al. (2004) [1]

Membrane integrity Cell organelles, particularly mitochondrial 
membranes

2,3,5; N, C McDonald (1999)

Methionine An α-amino acid 2,4; N Gallardo et al. (2002a) [1]

KAPA 7-Keto-8-aminopelargonic acid synthase 2,4; N Hwang et al. (2010) [1]

SBP65 Seed biotinylated protein 2,4; N Duval et al. (1994) [4]

Reactive oxygen 
species content

2,4; N Puntarulo et al. (1991) [14]; Schopfer et al. 
(2001) [15]

Cysteine α-Amino acid 2,4; C Birtic et al. (2011) [16]

(Continued)
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(Waterworth et al., 2010). Altered expression levels of PIMT1 
found in isolated Arabidopsis lines suggest that PIMT1 is a 
major endogenous factor that improves seed longevity and 
vigour (Ogé et al., 2008). It is likely that the PIMT repair 
pathway works in concert with other anti-ageing pathways to 
eliminate deleterious protein products actively.

Epigenetic regulation can affect gene expression in stored 
seeds by DNA methylation, histone modifications, histone 
variants and chromatin remodelling (Ahmad et al., 2010). 
Recently, Michalak et al. (2013) investigated the relationship 
between DNA methylation and desiccation in pear (Pyrus 
communis) seeds and seedlings and found that 1 year of seed 
storage induced a significant increase in the level of DNA 
methylation. This finding suggests that seed ageing may be 
coupled with increased DNA methylation. Also, several stud-
ies have shown that microRNA is involved in the germination 
process of Arabidopsis seeds (Martin et al., 2005, 2006; Liu 
et  al., 2007; Reyes and Chua, 2007; Kim et al., 2010). 
Recently, Li et al. (2013) discovered a diverse set of maize 
microRNAs and their regulatory functions in dry and imbibed 
seeds. However, little is known about the role of non-coding 
RNA in seed deterioration.

Seed germination is controlled by co-ordinated activities of 
various biological pathways, which in turn are regulated by 
spontaneous and differential expression of several gene fami-
lies. Therefore, a characterization of gene expression level, 
enzyme activity, difference in signal transduction response and 
regulatory mechanisms in stored seeds could yield useful age-
ing signals (Ventura et al., 2012). For example, genes involved 
in the glyoxylate cycle, sulfur amino acid pathway, starch 
mobilization pathway, ROS scavenging pathway, DNA and 
enzyme repair, and abscisic acid (ABA) and gibberellic acid 
(GA) signalling, may display differential expressions in stored 
seeds. The characterization of three genes (NnMT2a, 
NnMT2b and NnMT3) that encode metallothioneins (MT) 
from sacred lotus (Nelumbo nucifera) revealed that they were 
overexpressed during germination and upregulated in 
response to high salinity and oxidative stresses (Zhou et al., 
2012). Also, transgenic Arabidopsis seeds overexpressing 
NnMT2a and NnMT3 exhibited remarkably increased resis-
tance to accelerated ageing treatment and abiotic stresses. 
Garza-Caligaris et al. (2012) reported that At3g08030 mRNA 
detection could serve as a molecular marker of seed ageing in 
a variety of plant species. However, much less attention has 
been paid to studying the role of stored mRNAs or long-lived 
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Table 1: Continued

Biomarker Description Signala Referenceb

Ethylene A natural plant hormone 2,4; N, C Kepczynski and Kepczynska (1997)

Glutathione Antioxidant 2,4,5; C Birtic et al. (2011) [16]

CAT Catalase 2,5; N Revilla et al. (2009) [2]

SOD Superoxidate dismutase 2,5; N Revilla et al. (2009) [2]

APX Ascorbate peroxidase 2,5; C Yao et al. (2012) [4]

GR Glutathione reductase 2,5; C Yao et al. (2012) [4]

Lipid peroxidation 3; C Sung and Jeng (1994) [13]

Testa 3,6; N Debeaujon et al. (2000) [1]

Flavonoid Polyphenolic compounds 4; N Debeaujon et al. (2000) [1]

Tocopherol Related to vitamin E 4; C Sattler et al. (2004) [1]

Oligosaccharide/
total sugar ratio

4; C Bernal-Lugo and Leopold (1992) [2]

Raffinose Trisaccharide composed of galactose, 
glucose and fructose

4; C Bernal-Lugo and Leopold (1992) [2]

Malondialdehyde Reactive species 4; C Shin et al. (2009) [3]

Thiols Sulfur analogue of alcohols 4; C Birtic et al. (2011) [16]

Cysteinyl-glycine Intermediate metabolite in the glutathione 
metabolism

4; C Birtic et al. (2011) [16]

γ-Glutamyl-cysteine A precursor of glutathione 4; C Birtic et al. (2011) [16]

aAgeing signals were roughly classified into six categories corresponding to those in the text as follows: 1, molecular signal; 2, biochemical signal; 3, physiological 
signal; 4, metabolic signal; 5, mitochondrial signal; and 6, morphological signal. The condition or treatment under which the signal was identified is shown with N for 
natural ageing and/or C for controlled ageing.
bThe involved species presented in square brackets are as follows: [1] Arabidopsis thaliana; [2] Zea mays; [3] Oryza sativa; [4] Pisum sativum; [5] Medicago truncatula; 
[6] Cicer arietinum; [7] Silene vulgaris; [8] Silene acaulis; [9] Lycopersicon esculentum; [10] Nicotiana tabacum; [11] Ceiba aesculifolia; [12] Wigandia urens; [13] Arachis 
hypogaea; [14] Glycine max; [15] Raphanus sativus; [16] Lathyrus pratensis; and [17] Pyrus communis.
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mRNAs (Dure and Waters, 1965; Nakabayashi et al., 2005; 
Kimura and Nambara, 2010) in seed deterioration.

Biochemical signals
Biochemical changes associated with seed ageing include 
impairment of protein synthesis, protein inactivation, changes 
in enzyme activities, protein hydrolysis and post-translational 
modifications (Rajjou et al., 2012). Based on these signals, 
many biomarkers have been developed to assess seed develop-
ment, vigour, viability and germination (see Table 1). However, 
few studies have been conducted to evaluate and compare the 
effectiveness of these biomarkers in detecting ageing signals in 
different species and, consequently, they are rarely applied to 
assess seed ageing.

In aged seeds, the inability to synthesize proteins is associ-
ated with the loss of RNA synthesis ability (Bray and 
Dasgupta, 1976). However, protein synthesis can also be ham-
pered at the translation level due to reduced activity of ribo-
somes as a consequence of severe structural modifications. 
Such modifications have been found in non-viable seeds 
(Roberts and Osborne, 1973). Proteins may also be structur-
ally modified by non-enzymatic glycation through Amadori 
and Maillard reactions (Wettlaufer and Leopold, 1991). The 
non-enzymatic reactions are considered to be the most prob-
able cause of protein inactivation during seed storage, because 
dry seeds lack active enzymatic metabolism. Previous studies 
suggest that Amadori and Maillard products were found in 
soybean (Glycine max) seeds subjected to accelerated ageing 
and formed most rapidly in seeds at high humidity (Wettlaufer 
and Leopold, 1991). Protein inactivation in stored seeds may 
occur from the gain or loss of certain functional groups, by 
oxidation of sulfhydryl groups or by conversion of amino 
acids within the protein structure. Protein damage, such as 
spontaneous deamidation, isomerization and racemization of 
normal l-aspartyl and l-asparaginyl forms to abnormal 
l-isoaspartyl and l-isoasparaginyl forms, was observed dur-
ing cellular ageing (Galletti et al., 1995). The inactivation of 
proteins would depress the metabolic capacity and reduce the 
ability of biological systems to repair cellular damage occur-
ring during storage. Free radicals can also cause changes in 
protein structure. Soluble proteins are more susceptible to free 
radicals than membrane proteins. Certain amino acids, such 
as cysteine, histidine, tryptophan, methionine and phenylala-
nine, listed in typical order of sensitivity, are more susceptible 
to oxidative damage (Larson, 1997).

The activities of proteins in stored seeds may be altered, 
which in turn may affect metabolic processes. Alterations in 
protein activity could arise from conformational changes, 
including partial folding or unfolding, dissociation to mono-
mers or subunits, and condensation to polymers. Various 
alterations in protein structure and function affect the ability 
of seeds to germinate, because various hydrolytic enzymes, 
including lipase, phospholipase, protease, DNase, phospha-
tase and amylase, are required for successful germination 
(Basavarajappa et al., 1991). Likewise, the deleterious effects 

of ROS, which boost seed ageing and reduce seed viability, 
are also neutralized by the enzymatic antioxidative system, 
which consists of superoxide dismutase, catalase, ascorbate 
and glutathione reductase (Bailly, 2004). Various processes 
of post-translational modifications have been reported, 
including redox signalling, phosphorylation/dephosphoryla-
tion and nitrosylation. The roles of protein biotinylation, 
glycosylation, ubiquitination, farnesylation and acetylation 
in germination have also been demonstrated experimentally 
(Arc et al., 2011). All of these post-translational modifica-
tions play crucial roles during germination by directly affect-
ing the activities of various proteins and also by controlling 
the cascade of signal transduction between different compo-
nents of a pathway. For example, a set of protein kinases and 
protein phosphatases has been shown to be involved in the 
control of germination through the modulation of ABA sig-
nalling by a regulatory mechanism of phosphorylation and 
dephosphorylation (Brock et al., 2010; Hubbard et al., 
2010).

Accelerated ageing in pea seeds reduced seed viability, and 
this viability reduction was correlated with a substantial 
decrease in the transcriptional activation of prominent anti-
oxidative genes (Yao et al., 2012). Oxidative stress, due to an 
increase in lipid peroxidation and a decrease in the activities 
of antioxidative enzymes, is considered to play a critical role 
in seed ageing in various plant species (Bailly, 2004). In sun-
flower (Helianthus annuus) seeds, for example, the accumula-
tion of hydrogen peroxide (H2O2), lipid peroxidation and a 
decreased activity of antioxidant enzymes were considered to 
be associated with loss of viability during accelerated ageing 
(Kibinza et al., 2006). Catusse et al. (2011) demonstrated the 
utility of proteomics in developing biomarkers of seed vigour 
in sugarbeet (Beta vulgaris). However, many biomarkers 
based on biochemical signals were developed in controlled hot 
and humid ageing conditions (Table 1) and are not widely 
tested for their effectiveness in long-term cool storage condi-
tions.

Physiological signals
Extensive research has been carried out to determine the asso-
ciation of seed ageing with many physiological processes (e.g. 
the reviews of McDonald, 1999; Ventura et al., 2012; Diaz-
Vivancos et al., 2013). Physiological changes include lipid per-
oxidation, increase in ROS, imbalance in growth-regulating 
enzymes, impairment of metabolic transition, imbalance in 
growth-regulating hormones, loss of cytoplasmic glassy state, 
disruption of cellular membranes, and PCD. However, these 
physiological processes are significantly influenced by the seed 
moisture content and storage conditions. For example, lipid 
peroxidation, either autoxidation or enzymatic oxidation 
(lipoxygenases), is strongly influenced by moisture content. At 
lower seed moisture content (<6%), autoxidation is the pri-
mary cause of seed deterioration, while enzymatic oxidation 
increases when seed moisture content exceeds 14% for some 
species (Priestley et al., 1985). During oxidation, free radicals 
are produced, and these radicals react with various cellular 
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components and cause damage to cellular organization (Diaz-
Vivancos et al., 2013). Free radicals disrupt the cellular mem-
brane, which causes movement of organic and inorganic 
solvents across the membrane, resulting in an imbalance, 
which leads to seed deterioration. Free radicals also disrupt 
genetic and enzymatic integrity, thus limiting the efficiencies 
of transcriptional and translational machineries. These obser-
vations suggest that various physiological processes are inter-
dependent and, once the malfunctioning of one process starts, 
it triggers other events.

Early studies have established that the cytoplasm of a dry 
seed enters a vitreous or glassy state at a transitional moisture 
content that depends on temperature (Williams and Leopold, 
1989; Maki et al., 1994). In a glassy state, the cytoplasm is so 
viscous that diffusional movement and many deterioration 
reactions are arrested (Williams and Leopold, 1989; Leopold 
et al., 1992). The acquisition of a glassy state depends upon 
moisture content, temperature and the amount of various sug-
ars, such as sucrose, raffinose, stachyose and verbascose. Any 
physiological change that affects seed glassy state will lead to 
seed deterioration (Osborne, 2000). Recently, Walters et al. 
(2010) applied mechanical analysis techniques to the study of 
seed structure and transitions associated with changes in tem-
perature and moisture and argued that relationships between 
seed structural properties and longevity would provide the 
necessary tool to predict seed ageing.

Programmed cell death is a fundamental cellular process 
in plants and is involved in defence, development and 
response to stress (e.g. Reape and McCabe, 2008). The early 
studies of the role of PCD in seed viability were largely based 
on the observation of cereal seed germination coupled with 
aleurone autolysis. Plant hormones, particularly GA and 
ABA, were found to regulate this process tightly, and ABA is 
thought to slow down PCD (Fath et al., 2000). Several other 
reports also described the involvement of PCD in seed age-
ing (El-Maarouf-Bouteau et al., 2011; Hu et al., 2012). It is 
also believed that ROS trigger the primary events of PCD 
(Kranner et al., 2010a). Whether ROS-triggered PCD partici-
pates in the loss of seed viability during seed storage is largely 
unknown.

Metabolic signals
Many metabolic studies have been pursued to determine the 
role of metabolism in seed development and germination 
(Rajjou et al., 2012), but rarely in seed ageing per se (Bernal-
Lugo and Leopold, 1992). Some research has been carried out 
to analyse metabolic changes in seeds through stress imaging 
techniques (e.g. Qiao et al., 2005) and to develop biomarkers 
based on metabolic changes in seeds (Table 1). Nevertheless, 
we still are far from understanding the metabolic changes dur-
ing seed ageing (Shin et al., 2009; Wu et al., 2011). To facili-
tate the search for useful metabolic shifts in seeds stored over 
time, we highlight some advances in metabolic research below.

The transition from reserve accumulation to seed desicca-
tion in Arabidopsis seeds is associated with a major metabolic 

shift, resulting in the accumulation of various sugars, 
 nitrogen-rich amino acids, organic acids and other metabo-
lites (Fait et al., 2006). However, seed priming is associated 
with decreased contents of several of these metabolic interme-
diates, reinforcing the idea that metabolic reorganization is 
required for seed germination. Likewise, the levels of other 
metabolites increase significantly during seed priming and are 
further elevated during germination (Rajjou et al., 2012). The 
close resemblance of gene expression patterns and metabolic 
signatures between the seed desiccation process at the time of 
maturity and seed germination implies that the preparation of 
seeds for germination begins during desiccation (Fait et al., 
2006; Angelovici et al., 2010).

Among the essential amino acids synthesized by plants, 
methionine (Met) is a fundamental metabolite, which func-
tions not only as a building block for protein synthesis but 
also as a precursor of polyamines, ethylene, biotin and other 
metabolites (Ravanel et al., 2008; Takahashi et al., 2011). 
During Arabidopsis seed germination, various enzymes 
involved in Met biosynthesis showed differential expression. 
Adenosylmethionine (AdoMet) synthetase is highly expressed 
at the stage of radicle protrusion to synthesize AdoMet, an 
intermediate during Met synthesis (Gallardo et al., 2001, 
2002a, b; Bassel et al., 2008). Similar results were also 
reported in different plant species, such as tobacco (Nicotiana 
tabacum; Fulneček et al., 2011). Adenosylmethionine regu-
lates a myriad of transmethylation reactions in plant cells, 
each of which is catalysed by a specific AdoMet-dependent 
methyltransferase, such as the repair methyltransferase, PIMT, 
mentioned earlier. Other AdoMet-dependent methyltransfer-
ases influence hormone signalling and homeostasis in plant 
tissues (Sawicki and Willows, 2010). Likewise, the require-
ment of biotin for seed germination was also reported in 
Arabidopsis (Hwang et al., 2010). Along with Met, other 
amino acids, such as cysteine (Cys) and lysine, and other com-
pounds, such as biotin, ethylene and folate, can also play a 
major role in seed germination. For example, Cys is the pre-
cursor of the major antioxidant molecule glutathione, which 
is involved in several other processes required for successful 
seed germination (Bonsager et al., 2010). In dry pea seeds, the 
folate pool is present in very low concentration and increases 
considerably during germination (Jabrin et al., 2003). 
However, little is known about whether these metabolic pro-
cesses and products during germination are associated with 
any ageing processes and/or conditions of stored seeds before 
germination.

It is possible to characterize major metabolic shifts in seeds 
stored over time for the development of useful biomarkers 
(Bernal-Lugo and Leopold, 1992; Shin et al., 2009; Wu et al., 
2011). A good example is the exploratory research on the 
half-cell reduction potentials of low molecular weight thiols, 
cysteine, cysteinyl-glycine and γ-glutamyl-cysteine as bio-
markers for seed ageing (Kranner et al., 2006; Birtic et al., 
2011). More research is needed to search for informative 
 biomarkers from metabolic profiling in stored seeds (Wu 
et al., 2011).
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Mitochondrial signals
In seeds, the mitochondrion is the major organelle for energy 
supply, and its function is tightly coupled to many other cel-
lular processes associated with seed germination, such as cell 
signalling, cell differentiation, cell death and cell proliferation 
(Bewley, 1997). Mitochondria are one of the targets for vari-
ous forms of stress damage, probably due to the large turn-
over of ROS (Møller, 2001; Amirsadeghi et al., 2007; 
Macherel et al., 2007; Møller et al., 2007; Pastore et al., 
2007). Reactive oxygen species have many deleterious effects 
on mitochondrial membranes, leading to release of cyto-
chrome c into the cytosol to activate apoptotic cell death. 
Likewise, the mitochondrial DNA is more susceptible to ROS 
damage, because it lacks any protective membrane, and no 
histone proteins are associated with it. Damage to mitochon-
drial DNA can lead to dysfunction of mitochondria, which is 
considered to be a major component of seed ageing during 
prolonged storage. In animals, mitochondrial alterations are 
considered to be involved in, and possibly responsible for, 
regular or programmed cell death (Bras et al., 2005). They are 
often considered to be a central mechanism driving mamma-
lian ageing (Kujoth et al., 2005).

Some research has revealed that energy metabolism and 
membrane integrity in mitochondria are closely associated 
with seed ageing (Benamar et al., 2003; Lo et al., 2011; Wang 
et al., 2012). One study (Lo et al., 2011) further reasoned that 
mitochondrial actin may be involved in mitochondrial DNA 
segregation and mitochondrial division. Law et al. (2012) sug-
gested that the mitochondrial transition from a dormant to an 
active metabolic state was punctuated by an early molecular 
switch, characterized by a transient burst in the expression of 
genes encoding mitochondrial proteins. In artificially aged 
sunflower seeds with varying moisture contents, El-Maarouf-
Bouteau et al. (2011) demonstrated that the effect of ageing 
on energy metabolism was related to moisture content, and 
mitochondrial dysfunction in aged seeds may be associated 
with the high moisture content. Recently, Wang et al. (2012) 
developed a method to monitor the structural alteration in 
mitochondrial membranes due to seed ageing, based on the 
early observation that mitochondrial alteration is associated 
with the damage or recovery of mitochondrial outer and inner 
membranes. However, insufficient studies have been carried 
out to characterize mitochondrial dysfunction under long-
term storage and their associations with seed storage factors.

Integrating ageing signals for prediction 
of viability
Reviewing detectable ageing signals carries the hope that these 
signals can be used as seed viability biomarkers for prediction 
of viability loss over storage time, as illustrated in Fig. 1. It is 
clear that these ageing signals, even classified non-exclusively 
into five groups, are complex and interconnected. Some of 
these signals have been used to develop biomarkers (see 
Table 1), but no reports have been found so far on the use of 
these biomarkers for prediction of seed viability. This may 

reflect the fact that little effort has been made into the devel-
opment and utilization of such viability prediction tools, and 
challenges exist in utilization of these ageing signals for pre-
diction of viability.

The ideal monitoring tool for a genebank should provide 
an overall assessment of seed ageing status for a seed lot, such 
as generated by a germination test, allowing decisions to be 
made regarding the necessity of seed regeneration (Roberts, 
1973; Ellis et al., 1985). An informative viability biomarker 
should allow for identification and quantification of seeds 
with viability loss through a bioassay of a seed lot. Thus, more 
effort is needed to develop such biomarkers from various age-
ing signals, with empirical validation of their ability to predict 
viability with traditional germination tests. However, given 
the complexity of these ageing signals, it is difficult to develop 
individual biomarkers capable of identifying clear-cut finger-
prints of different ageing stages. Some signals may vary for 
different species even in the same storage conditions (Priestley, 
1986; Probert et al., 2009), and related biomarkers may not 
always be effective. Some biomarkers were developed in 
 controlled, not storage, ageing conditions, and their effective-
ness in use for prediction of viability may vary with respect to 
ageing conditions. Different biomarkers developed from dif-
ferent signals may have variable weights in viability predic-
tion. Thus, an integrative approach to using global ageing 
signals through multivariate modelling for viability prediction 
should be explored.

Our motivation to argue for a biomarker-based prediction 
of seed viability loss (Fig. 1) is based on the reasoning that 
biomarkers, such as genome alternations or telomere lengths, 
if available, should carry more accurate ageing information 
and are experimentally more reproducible, particularly for 
those genetically diverse seed collections of complex ageing 
kinetics (Walters, 1998), than traditional germination tests or 
other methods. Thus, the use of viability biomarkers can, at 
least theoretically, contribute to more accurate estimation of 
seed viability distribution spread (or standard deviation; σp) 
for given storage conditions (Fig. 1) and, consequently, more 
accurate prediction of seed viability loss (Ellis et al., 1985; 
Walters et al., 2005). However, whether such a biomarker-
based approach is cost effective and if it can address other 
challenges currently faced with seed viability predictions 
(Pritchard and Dickie, 2003; Walters et al., 2005) remains to 
be seen. Among those challenges is the early biomarker-based 
projection of seed longevity for a seed collection in given stor-
age conditions for the beneficial timing of seed regeneration.

Perspectives for viability prediction 
tools
Our review, although not exhaustive, shows that many tools 
are available for assessing seed deterioration. However, no 
comprehensive research has been done to evaluate, compare 
and standardize these tools and to make recommendations 
for use in ex situ genebanks. Clearly, further research is 
needed to assess the effectiveness and applicability of existing 
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tools in genebank operations. More importantly, more efforts 
should be directed towards the development of advanced 
viability prediction tools for assessing seed ageing under ex situ 
storage.

The exciting fact obtained from this review is that many 
opportunities exist for the exploration and development of 
more accurate tools for monitoring seed ageing under ex situ 
seed conservation. Several interesting ageing signals have 
emerged from this literature search. They are the changes 
reflected in ROS and mitochondrial triggered PCDs, expression 

of antioxidative genes and DNA and protein repair genes, 
seed telomere lengths, epigenetic regulation of related genes 
(microRNA and methylation), and altered organelle and nuclear 
genomes. Although challenges exist in the use of ageing signals 
for viability prediction, as discussed above, it is our hope that 
these ageing signals should be better explored and used as bio-
markers to play a role in seed viability monitoring for ex situ 
seed conservation.

Here, we promote two lines of research with great potential 
to take advantage of recent developments in next generation 
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Figure 1: Illustration of complex and interconnected ageing signals and their potential use as viability biomarkers for early predictions of seed 
viability loss over storage time. A continuous or dashed line represents known or assumed relationships among ageing signals, respectively. 
Abbreviations: ABA, abscisic acid; AdoMet, S-adenosylmethionine; GA, gibberellic acid; O & IMM, outer and inner mitochondrial membrane; 
ROS, reactive oxygen species; and σp, the spread (or standard deviation) of seed viability distribution in the improved equation of seed viability 
prediction (Ellis and Roberts, 1980).
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sequencing, calorimetry and imaging technologies. Recent 
advances in next generation sequencing technologies have 
made the acquisition of global ageing signals through genomic, 
transcriptomic, proteomic or metabolic analyses feasible and 
practical (Le et al., 2007; Rajjou et al., 2008; Chen et al., 
2013), and new sensitive and effective biomarkers can be 
developed to identify ageing signals and assess ageing status 
(Koboldt et al., 2013; Nagel et al., 2015). Much could be 
learnt from next generation sequencing as applied to the devel-
opment of biomarkers for human diseases (e.g. Schwarzenbach 
et al., 2011; Krock et al., 2014; Zhou et al., 2014). Among next 
generation sequencing applications, searching for ageing sig-
nals from related DNA alteration or mitochondrial dysfunc-
tion may be fruitful and informative (Chen et al., 2013), 
because these processes or molecules may be critical to seed 
ageing and/or represent the fingerprints of seed deterioration. 
Specific effort may be made on the genomic analysis of mito-
chondrial dysfunction, transcriptome alteration, microRNA 
expression alteration and abnormal methylations in response 
to different seed storage conditions present in genebanks. 
More focus should be placed on how variable ageing signals 
are integrated into a predictive tool for an overall ageing 
assessment of a seed lot (Ellis and Roberts, 1980; Walters et al., 
2005).

The non-destructive or non-invasive analyses of stored 
seeds through microcalorimetry and/or stress imaging tech-
niques may also hold the potential to provide new methods 
for assessment of seed ageing. Studies using microcalorimetry 
(Criddle et al., 1991; Wadso, 2000) have shown that meta-
bolic heat flows can be used to assess gross metabolism associ-
ated with germination processes and have demonstrated the 
potential of extracting ageing signals (Prat, 1952; Mourik and 
Bakri, 1991; Hageseth and Cody, 1993; Sigstad and Prado, 
1999; Edelstein et al., 2001; Qiao et al., 2005; Hay et al., 
2006). Some studies have demonstrated good potential, such 
as the applications of isothermal microcalorimetry to predict 
seed longevity in R. sceleratus (Hay et al., 2006), the image 
reconstruction technique to estimate pepper seed viability 
(Kim et al., 2014) and mechanical analysis techniques to 
quantify differences among seed structures associated with 
ageing (Walters et al., 2010). More research is needed to assess 
the accuracy of prediction of viability for seeds of different 
species under long-term storage (Walters et al., 2005; Hay and 
Probert, 2013). The prediction tools developed should be 
tested for their effectiveness and applicability in genebank 
operations (FAO, 2014).

Nonetheless, the traditional germination test will continue 
to play a central role in seed viability monitoring. With 
advances in new technologies for detecting ageing signals, 
however, it is possible to explore and develop innovative via-
bility prediction tools that are more accurate, sensitive, quick 
and cost effective (Kocsy, 2015). By combining all of these 
approaches, seed viability under storage can be monitored 
better for long-term management and conservation of ex situ 
seed germplasm.

Concluding remarks
Seed ageing is a complex biological trait and difficult to mon-
itor. This review summarizes the recent development of tools 
for assessing seed ageing and reveals several biological signals 
that could be used to assess seed deterioration. Two lines of 
research are promoted that have great potential to take 
advantage of recent developments in next generation sequenc-
ing, calorimetry and imaging technologies for the develop-
ment of biomarker-based seed viability prediction tools. These 
research efforts will provide useful methods to supplement 
traditional germination tests, enhancing the monitoring of 
seed deterioration for long-term conservation of ex situ seed 
germplasm.
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